\square
CBSEGuess.com

CLASS X GUESS PAPER MATHS

General instructions:

1. This paper contains three sections A, B and C.
2. Sections A and B contain 20 questions each of 1 mark each. A candidate has to answer any 16 questions in each section.
3. Section C contains $10 q u e s t i o n s$ based on two case studies of which any four question in each case study should be answered.
4. There is no negative marking.

Section-A

1. Decimal representation of $\frac{43}{2^{3} X 5^{5}}$ is
a) 0.00043
b) 0.00086
c) 0.00172
d) 0.00129
2. LCM of two prime numbers is always \qquad
a) 1
b) smaller of the two
c) greater of the two
d) Product of the two.
3. If $a^{3}=0.008$ then ' a ' is
a) Irrational
b) Rational
c) Integer
d) Whole number
4. If $a b=864$ and $\operatorname{HCF}(a, b)=12$ then $\operatorname{LCM}(a, b)$ is \qquad
a) 12
b) 36
c) 48
d) 72
5. If $2^{x-y}=32$ and $2^{x+y}=128$ then (x, y) is \qquad
a) $(5,2)$
b) $(6,1)$
c) $(1,6)$
d) None of these

chasefguess	CBSEGuess.com

6. Two fair dice are thrown together. Total number of outcomes is \qquad
a) 6
b) 12
c) 2
d) 36
7. If α, β are zeroes of polynomial $a x^{2}+b x+c$ then $\frac{1}{\alpha}+\frac{1}{\beta}$ is_
a) $\frac{b}{a}$
b) $\frac{b}{c}$
c) $\frac{-b}{c}$
d) $\frac{-c}{a}$
8. The value of ' k ' for which the system of equations $3 x-2 y+5=0: 5 x+4 y+k=0$ will have unique solution \qquad
a) 5
b) -10
c) 10
d) any real number.
9. If $\cot \theta=\frac{4}{3}$, then $\operatorname{cosec}^{2} \theta$ is \qquad
a) $\frac{3}{5}$
b) $\frac{5}{3}$
c) $\frac{9}{5}$
d) $\frac{25}{9}$
10. Value of $\cos ^{2} 35^{\circ}+\cos ^{2} 55^{\circ}-1$ is \qquad
a) 1
b) 2
c) -1
d) 0
11. A bag contains blue, red and green balls. The probability of drawing red and blue balls are 0.6 and 0.03 respectively. The probability of drawing green ball is \qquad
a) 0.1
b) 0.35
c) 0.37
d) 0.33
12. $\frac{\tan ^{2} A}{\cot ^{2} A}=$ \qquad
a) 1
b) -1
c) $\tan ^{4} \mathrm{~A}$
d) $\cot ^{4} \mathrm{~A}$

chse-gguess	CBSEGuess.com

13. The distance between the points $(a, 0)$ and $(0, b)$ is \qquad
a) $a^{2}+b^{2}$
b) $a^{2}-b^{2}$
c) $\sqrt{a^{2}+b^{2}}$
d) $\sqrt{a^{2}-b^{2}}$
14. $A B C$ is a triangle right angled at A and $A D \perp B C$. If $A D=B D=4 \mathrm{~cm}$, then $C D=$ \qquad
a) 4 cm
b) 8 cm
c) 16 cm
d) none of these.
15. If $\sin \left(30^{\circ}+\theta\right)=\cos \theta$, then the measure of θ is \qquad
a) 60°
b) 30°
c) 90°
d) 45°
16. The area of the region between two concentric circles of radius 5 cm and 3 cm respectively is \qquad
a) $16 \pi \mathrm{~cm}^{2}$
b) $4 \pi \mathrm{~cm}^{2}$
c) $34 \pi \mathrm{~cm}^{2}$
d) None of these
17. A person walks 150 m due east from his house and then turning left walks another 80 m . His distance from his house is \qquad
a) 230 m
b) 170 m
c) 90 m
d) 70 m
18. Areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectivley. If the altitude of the smaller triangle is 9 cm , altitude of the larger triangle is \qquad
a) 11 cm
b) 9 cm
c) 10 cm
d) 12 cm .
19. Area of the minor segment formed by a quadrant of a circle of radius 7 cm is \qquad
a) $14 \mathrm{~cm}^{2}$ b) $49 \mathrm{~cm}^{2}$
c) $21 \mathrm{~cm}^{2}$
d) $7 \mathrm{~cm}^{2}$
20. In $\triangle A B C, D E \| B C$. If $A D=2.5 \mathrm{~cm}, A B=7.5 \mathrm{~cm}$ and $E C=6 \mathrm{~cm}$ then $A C=$ \qquad
a) 7 cm
b) 8 cm
c) 9 cm
d) 10 cm .

chase	
Gguess	cBSEGuess.com

Section- B

21. Sum of two numbers is 120 , their HCF is 24 . How many such pairs of numbers exist?
a) 1
b) 2
c) 3
4) 5
22. The smallest number that leaves remainders 1,2 and 3 respectively when divided by 2,3 and 4 but completely divisible by 5 is _
a) 65
b) 55
c) 75
d) 45
23. The greatest number that divides 124,165 and 288 leaving remainder 1 in each case is \qquad
a) 23
b) 31
c) 41
d) 54
24. A father's age is four times the sum of the ages of his two children. Five years hence his age will be $21 / 4$ times the sum of the ages of children then. Father's present age is \qquad
a) 32 years
b) 40 years
c) 60 years
d) 44 years
25. The zeroes of the polynomial $17 x^{2}-30 x-8$ will \qquad
a) Both be negative b) both positive c) bigger of the two positive d) bigger of the two negative.
26. If the system of equations $2 x+3 y=7$; $(k-2) x+(k+1) y=8$ then \qquad
a) $K=8$
b) $k \neq 8$
c) $k=6$
d) $k \neq 4$
27. If α, β are zeroes of polynomial $a x^{2}+b x+c$, the $\alpha-\beta$ is
a) $\frac{b}{a}$
b) $\frac{b c}{a}$
c) $\frac{\sqrt{b^{2}-4 a c}}{a}$
d) $\frac{\sqrt{b^{2}+4 a c}}{a}$
28. A line joining $A(4,6)$ and $B(7,-6)$ is trisected at P and Q. If P is nearer to A then co-ordinates of P are \qquad
a) $(2,5)$
b) $(5,2)$
c) $(6,0)$
d) None of these

Cbse	
Fguess	cBSEGuess.com

29. The point on the x-axis which is equidistant from points $A(2,-5)$ and $B(-2,9)$ is
a) $(0,7)$
b) $(7,0)$
c) $(-7,0)$
d) $(0,-7)$
30. $A B C D$ is a rectangle whose three vertices are $A(0,3), B(0,0)$ and $C(5,0)$. The length of its diagonal is \qquad
a) 5 units b) 3 units
c) V34 units
d) 4 units.
31. If S is point on side $P Q$ of $\triangle P Q R$ such that $P S=Q S=R S$ then
a) $R S^{2}=P R . Q R$
b) $Q S^{2}+R S^{2}=Q R^{2}$
c) $P R^{2}+Q R^{2}=P Q^{2}$
d) $P S^{2}+P R^{2}=P R^{2}$
32. If $2 \sin 3 x=\sqrt{ } 3$, then $x=$ \qquad
a) 30°
b) 60°
c) 20°
d) 10°
33. If $\sin 5 \theta=\cos 4 \theta$, both 5θ and 4θ being acute angles then value of $2 \sin 3 \theta-\sqrt{3} 3 \tan 3 \theta$ is \qquad
a) 1
b) 2
c) 0
d) $1+\sqrt{ } 3$
34. If $\cos (\alpha+\beta)=0$, then $\sin (\alpha-\beta)$ can be reduced to \qquad
a) $\operatorname{Cos} \beta$
b) $\cos 2 \beta$
c) $\sin \alpha$
d) $\sin 2 \alpha$
35. In triangles $A B C$ and $D E F \frac{A B}{D E}=\frac{B C}{F D}$, then the triangles will be similar if \qquad
a) $\llcorner B=\llcorner E$
b) $L A=\llcorner D$
c) $\llcorner B=\llcorner D$
d) $L A=\llcorner F$
36. Area of the largest triangle hat can be inscribed in a semicircle is \qquad
a) r^{2} sq.units
b) $1 / 2 r^{2}$ sq.units
c) $\sqrt{ } 2 r^{2}$ sq.units
d) $2 r^{2}$ Sq.units
37. Probability expressed as percentage of a particular occrence can never be \qquad

chsesgors	

a) Less than 100 b) less than 0
c) greater than 1
d)anything but a whole number.
38. Cards are marked 1 - 100. One card is picked at random. Probability of that bearing a prime number is
a) $1 / 4$
b) $\frac{13}{50}$
c) $\frac{6}{25}$
d) $\frac{1}{5}$
39. Area of a square that can be inscribed in a circle of radius 8 cm is \qquad
a) $256 \mathrm{~cm}^{2}$
b) $128 \mathrm{~cm}^{2}$
c) $64 \sqrt{ } 2 \mathrm{~cm}^{2}$
d) $64 \mathrm{~cm}^{2}$
40. Area of the minor segment of a circle of radius ' r ' cm and central angle 120° is
a) $\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right) r^{2}$
b) $\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) r^{2} \quad$ c) $2\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right) r^{2}$
d) None of these

CbSe	

Section-C

Case study 1:- A farmer has a whose vertices are $(-4,3),(-5,-4)$ and $(3,2)$. Answer the following questions.
41. The perimeter of the field is \qquad
a) 20 V 2 units
b) 10 V 2 units
c) $10(\sqrt{2}+1)$ units
d) none of these.
42. The field is in the shape of \qquad triangle.
a) Isosceles
b) Right
c) Scalene
d) none of these.
43. The centroid G divides the median in the ratio $2: 1$. Then its coordinates are_
a) $(-2,1)$ b) $(-2,1 / 3)$
c) $(2,-1)$
d) $(2,1 / 3)$
44. The length of the longest side is \qquad
a) 10 unit b) 5 V 2 units
c) 10 V 2 units
d) None of these.
45. The length of the median to the longest side is \qquad
a) 5 V 2 units
b) 5 units
c) 6 units
d) None of these.

Case study 2:- Zero of a polynomial is the value of the variable for which the expression becomes equal to zero. The number of zeros is generally equal to the degree of the polynomial. If α, β are zeroes of a quadratic polynomial the polynomial can be obtained by using the formula $x^{2}-(\alpha+\beta) x+\alpha \beta$.
46. If 2 is a zero of the polynomial $7 x^{2}+p x-10$, then $p=$ \qquad
a) 9
b). -9
c) 3
d) -3
47. If α, β are the zeroes of polynomial $2 x^{2}+5 x+k$ such that $\alpha^{2}+\beta^{2}+\alpha \beta=1 / 4, k=$
a) 2
b) 6
c) 12
d) -12

CbSe	
Gguess	CBSEGuess.com

48. The polynomial whose zeroes are -7 and -5 is \qquad
a) $X^{2}-12 x+35$
b) $x^{2}+12 x+35$
c) $x^{2}-12 x-35 \quad$ d) $x^{2}-12 x-35$
49. If one of the zeroes of the polynomial $a x^{3}+b x^{2}+c x+d$ is ZERO, the product of the other two zeroes is given by \qquad
a) $\frac{-b}{a}$
b) $\frac{b}{a}$
c) $\frac{c}{a}$
d) $\frac{-d}{a}$
50. If α, β are zeroes of the polynomial $a x^{2}+b x+c$ then value of $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$ is_
a) $\frac{3 a b c-b^{3}}{a^{2} c}$
b) $\frac{3 a b c+b^{3}}{a^{2} c}$
c) $\frac{3 a b c-b^{3}}{a^{3} c}$
d) None of these
