

CLASS X GUESS PAPER MATHS

General instructions:

a) 0.00043

- 1. This paper contains three sections A,B and C.
- 2. Sections A and B contain 20 questions each of 1 mark each. A candidate has to answer any 16 questions in each section.
- 3. Section C contains 10questions based on two case studies of which any four question in each case study should be answered.
- 4. There is no negative marking.

b) 0.00086

5. If $2^{x-y} = 32$ and $2^{x+y} = 128$ then (x,y) is____

c) (1, 6)

a) (5, 2) b) (6, 1)

1. Decimal representation of $\frac{43}{2^3 X 5^5}$ is

Section-A

c) 0.00172

d) 0.00129

2. LCM of two prime numbers is always___
a) 1 b) smaller of the two c) greater of the two d) Product of the two.
3. If a³ =0.008 then 'a' is___
a) Irrational b) Rational c) Integer d) Whole number
4. If ab = 864 and HCF (a,b) = 12 then LCM (a,b) is___
a) 12 b) 36 c) 48 d) 72

d) None of these

- 6. Two fair dice are thrown together. Total number of outcomes is___
- a) 6
- b) 12
- c) 2
- d) 36
- 7. If α, β are zeroes of polynomial $ax^2 + bx + c$ then $\frac{1}{\alpha} + \frac{1}{\beta}$ is___

- a) $\frac{b}{a}$ b) $\frac{b}{c}$ c) $\frac{-b}{c}$ d) $\frac{-c}{a}$
- 8. The value of 'k' for which the system of equations 3x 2y + 5 = 0: 5x + 4y + k = 0 will have unique solution____
- a) 5
- b) -10
- c) 10 d) any real number.
- 9. If $\cot \theta = \frac{4}{3}$, then $\csc^2 \theta$ is ____ a) $\frac{3}{5}$ b) $\frac{5}{3}$ c) $\frac{9}{5}$

- d) $\frac{25}{9}$
- 10. Value of $\cos^2 35^\circ + \cos^2 55^\circ 1$ is ____
- a) 1
- b) 2 c) -1
- d) 0
- 11. A bag contains blue, red and green balls. The probability of drawing red and blue balls are 0.6 and 0.03 respectively. The probability of drawing green ball is ____
- a) 0.1
- b) 0.35
- c) 0.37
- d) 0.33

- c) tan⁴A
 - d) cot⁴A

- 13. The distance between the points (a,0) and (0, b) is _____
- a) $a^2 + b^2$ b) $a^2 b^2$ c) $\sqrt{a^2 + b^2}$ d) $\sqrt{a^2 b^2}$
- 14. ABC is a triangle right angled at A and AD \perp BC. If AD = BD=4 cm, then CD =
- a) 4 cm b) 8 cm
- c) 16 cm
- d) none of these.
- 15. If $\sin (30^{\circ} + \theta) = \cos \theta$, then the measure of θ is ___
- a) 60°
- b) 30°
- c) 90°
- 16. The area of the region between two concentric circles of radius 5 cm and 3 cm respectively is
- a) $16\pi \text{ cm}^2$
- b) 4π cm²
- c) 34π cm² d) None of these
- 17. A person walks 150 m due east from his house and then turning left walks another 80 m. His distance from his house is _____
- a) 230 m b) 170 m
- c) 90 m
- d) 70 m
- 18. Areas of two similar triangles are 121 cm² and 81 cm² respectivley. If the altitude of the smaller triangle is 9 cm, altitude of the larger triangle is
- a) 11 cm b) 9 cm
- c) 10 cm
- d) 12 cm.
- 19. Area of the minor segment formed by a quadrant of a circle of radius 7 cm is ____
- a) 14 cm² b) 49 cm²
- c) 21 cm²
- d) 7 cm²
- 20. In ΔABC, DE BC. If AD = 2.5 cm, AB = 7.5 cm and EC = 6 cm then AC = ____
- a) 7 cm b) 8 cm
- c) 9 cm
- d) 10 cm.

CBSEGuess.com

Section-B

- 21. Sum of two numbers is 120, their HCF is 24. How many such pairs of numbers exist?
- a) 1
- b) 2
- c) 3
- 4) 5
- 22. The smallest number that leaves remainders 1,2 and 3 respectively when divided by 2,3 and 4 but completely divisible by 5 is
- a) 65
- b) 55
- c) 75
- d) 45
- 23. The greatest number that divides 124, 165 and 288 leaving remainder 1 in each case is____
- a) 23
- b) 31
- c) 41
- d) 54
- 24. A father's age is four times the sum of the ages of his two children. Five years hence his age will be 2 ¼ times the sum of the ages of children then. Father's present age is
- a) 32 years
- b) 40 years
- c) 60 years d) 44 years
- 25. The zeroes of the polynomial $17x^2 30x 8$ will
- a) Both be negative b) both positive c) bigger of the two positive d) bigger of the two negative.
- 26. If the system of equations 2x + 3y = 7; (k 2)x + (k+1)y = 8 then
- a) K = 8 b) $k \neq 8$ c) k = 6 d) $k \neq 4$

- 27. If α,β are zeroes of polynomial $ax^2 + bx + c$, the $\alpha-\beta$ is

- b) $\frac{bc}{a}$ c) $\frac{\sqrt{b^2-4ac}}{a}$ d) $\frac{\sqrt{b^2+4ac}}{a}$
- 28. A line joining A(4, 6) and B(7, -6) is trisected at P and Q. If P is nearer to A then co-ordinates of P are ___
- a) (2, 5) b) (5, 2) c) (6,0)
- d) None of these

29	The point on	the x-axis v	vhich is e	equidistant fro	m points A	(2 - 5)) and B	(_2 9)	is
∠ J.	THE POINT ON	LIIC A GAIS V	VIIICII 13 (zgalaistailt ii o		(Z, J	, and b	\ Z ,J,	ா

- a) (0, 7) b) (7, 0) c) (-7, 0) d) (0,-7)
- 30. A BCD is a rectangle whose three vertices are A(0, 3), B(0, 0) and C(5, 0). The length of its diagonal is
- a) 5 units b) 3 units c) $\sqrt{34}$ units
- d) 4 units.
- 31. If S is point on side PQ of \triangle PQR such that PS = QS = RS then

- a) $RS^2 = PR.QR$ b) $QS^2 + RS^2 = QR^2$ c) $PR^2 + QR^2 = PQ^2$ d) $PS^2 + PR^2 = PR^2$
- 32. If $2\sin 3x = \sqrt{3}$, then $x = \sqrt{3}$
- a) 30°
- b) 60°
- c) 20°
- d) 10°
- 33. If $\sin 5\theta = \cos 4\theta$, both 5θ and 4θ being acute angles then value of $2\sin 3\theta \sqrt{3}\tan 3\theta$ is ____
- a) 1
- b) 2
- c) 0
- d) $1 + \sqrt{3}$
- 34. If $\cos(\alpha + \beta) = 0$, then $\sin(\alpha \beta)$ can be reduced to____
- a) $\cos \beta$ b) $\cos 2\beta$
- c) sina
- d) sin 2α
- 35. In triangles ABC and DEF $\frac{AB}{DE} = \frac{BC}{FD}$, then the triangles will be similar if_____
- a) ∟B = ∟E
- b) $\bot A = \bot D$ c) $\bot B = \bot D$ d) $\bot A = \bot F$
- 36. Area of the largest triangle hat can be inscribed in a semicircle is
- a) r² sq.units
- b) $\frac{1}{2}$ r² sq.units c) $\frac{1}{2}$ c) $\frac{1}{2}$ r² sq.units
- d)2r² Sq.units
- 37. Probability expressed as percentage of a particular occrence can never be___

CBSEGuess.com

- a) Less than 100 b) less than 0
- c) greater than 1
- d)anything but a whole number.
- Cards $a_1 \subset a_2 \subset a_3 \subset a_4 \subset a_4$ 38. Cards are marked 1 – 100. One card is picked at random. Probability of that bearing a prime
- a) 1/4
- c) $\frac{6}{25}$ d) $\frac{1}{5}$
- 39. Area of a square that can be inscribed in a circle of radius 8cm is _____
- a) 256 cm²
- b) 128 cm²
- c) $64\sqrt{2}$ cm² d) 64 cm²
- 40. Area of the minor segment of a circle of radius 'r' cm and central angle 120° is_

- a) $\left(\frac{\pi}{3} \frac{\sqrt{3}}{4}\right)r^2$ b) $\left(\frac{\pi}{3} \frac{\sqrt{3}}{2}\right)r^2$ c) $2\left(\frac{\pi}{3} \frac{\sqrt{3}}{4}\right)r^2$ d) None of these

Section-C

Case study 1:- A farmer has a whose vertices are (-4, 3), (-5, -4) and (3, 2). Answer the following questions.

•	of the field is b) 10V2 units	c) 10(V2 + 1) u	units d) none of these.						
	the shape of t b) Right		d) none of these.						
	6 divides the median i $\frac{1}{3}$) c) $(2, -1)$. Then its coordinates are_ $^{\prime}$)						
4. The length of the longest side is) 10 unit b) 5v2 units c) 10v2 units d) None of these.									
_	the median to the lon								

Case study 2:- Zero of a polynomial is the value of the variable for which the expression becomes equal to zero. The number of zeros is generally equal to the degree of the polynomial. If α,β are zeroes of a quadratic polynomial the polynomial can be obtained by using the formula $x^2-(\alpha+\beta)x+\alpha\beta$.

46. If 2 is a zero of the polynomial $7x^2 + px - 10$, then $p = ___$ a) 9 b).-9 c) 3 d)-3

47. If α,β are the zeroes of polynomial 2x² +5x +k such that α^2 + β^2 + $\alpha\beta$ = ½ , k =_

a) 2

b) 6

c) 12

d)-12

- 48. The polynomial whose zeroes are -7 and -5 is
- a) $X^2 12x + 35$ b) $x^2 + 12x + 35$ c) $x^2 12x 35$ d) $x^2 12x 35$

- 49. If one of the zeroes of the polynomial $ax^3 + bx^2 + cx + d$ is ZERO, the product of the other two zeroes is given by ____ a) $\frac{-b}{a}$ b) $\frac{b}{a}$ c) $\frac{c}{a}$ d) $\frac{-d}{a}$

- 50. If α,β are zeroes of the polynomial $ax^2 + bx + c$ then value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is_

- a) $\frac{3abc-b^3}{a^2c}$ b) $\frac{3abc+b^3}{a^2c}$ c) $\frac{3abc-b^3}{a^3c}$ d) None of these